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INTRODUCTION

In a previous series of papers 11-5], matrix methods for linear

dynamic analyses of lattice structures are developed. A lattice structure,

in this context, is defined to be an idealized network of one-dimensional

members which are connected by joints. In this paper, transfer matrices

and joint coupling matrices are used to compute the natural frequencies of

vibration of a five-bay planar lattice structure. The method of analysis

is applicable to general two and three-dimensional lattices. The necessary

numerical computations may be performed easily using a personal computer.

Numerical results for the first twenty-five nonzero natural frequencies of

the five-bay lattice structure are given for the case when the members of

the lattice are modeled as Bernoulli-Euler beams, and for the case when

the lattice members are modeled as Timoshenko beams. The results obtained

here are compared with the results of a previous analysis [6] using a

finite element method and an experimental modal analysis. A short dis-

cussion of the results and of some potential applications of the type of

analysis presented here is given.
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ANALYSIS

Lattice Structure and Model %

The lattice structure considered here is shown in Fig. 1. The lattice

is machined from a single piece of aluminum, and contains no welds or

fasteners.

The model used here to analyze the lattice structure of Fig. 1 is

shown in Fig. 2. The structure is modeled as an idealized lattice of one-

dimensional members which are connected by joints. It is assumed that the

members and joints can move only in the plane of the structure, and that

all motions are small.

The joints of the lattice model are labeled 1 through 12 as shown in

Fig. 2. It is assumed that each joint is rigid, and that each connection

between a joint and a beam is rigid. It is also assumed that each joint

is massless and has no spatial extent. The assumptions that the joints are

massless and have no spatial extent are made only for convenience; some

*comments about the analysis of joints with mass and/or spatial extent are

given below.

It is assumed that all members of the lattice model of Fig. 2 are

identical, and that each member can extend (and contract) axially and bend

flexurally. It is also assumed that the axial and flexural motions are

uncoupled. Two different member models are used. In the first model,

hereafter called the Bernoulli-Euler beam model, the lattice members are

modeled as classical longitudinal rods for axial motions and as Bernoulli-

Euler beams for flexural motions. In the second model, hereafter called

0 the Timoshenko beam model, the lattice members are modeled as classical

longitudinal rods for axial motions and as Timoshenko beams for flexural

-4-
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motions. In both models, the stace vector at any point x of a lattice

member is of the form

u(x,t)

V(X, t)

Z((x~t)z(x,) xt ) (i)
N(x,t)

V(x't)i

F(x,t)

where u(x,t) is the longitudinal displacement of the member, v(x,t) is the

transverse displacement of the member, i(x,t) is the rotation of the member,

M(x,t) is the bending moment in the member, V(x,t) is the shear force in

the member, F(x,t) is the axial force in the member, x is a spatial coordi-

nate which extends along the length of the member and t is time. The com-

ponents of the state vector and the sign convention adopted here for the

components of the state vector are shown in Fig. 3. Local coordinate

directions x i (i 1,2, .. 16) are assigned to the lattice members as 'p

shown in Fig. 2.

OS.

Joint Coupling Matrix Relationships

The Fourier transforms z and z2 of the state vectors zI and z2 shown

in Fig. 2 are related by an equation of the form [3]

z

0 -(2)

55
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where Bl(w) is the joint coupling matrix of joint 1. Eqn. (2) is the joint
=1m

coupling matrix relationship for joint 1. Joint coupling matrix relation-

ships for joints 2 through 12 can be written in a similar manner as

B=() 0 (3)

-4

-5

B5(w) z =0 (4)

-7-

3 S6.

B (W) z 0(5)
-4

1

-5 12(w) z1 =0 (6)

-3

-l4

B() z =0 (7)
615 -
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-7(~ -18 =0(8)

z 2 1 9[f

F20 a.

B89() z 21 0 (9)

-8 ~--21 26

A 9, )-z 2 4051 
0

z 2

- 23

z I

B I 0 ( W)1 z 2 7 = 0 
( 1

_B 9( ) z0 

(12) 
a.
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£31

A12(W) = 0 (13)

g3 2

The locations of the state vectors z. (i = 1,2, ... , 32) are shown in
5-

Fig. 2. The joint coupling matrices B. (i = 1,2, ..., 12) may be derived

from the general formulas given in [3], or directly from first principles,

as is done in Appendix A. The joint coupling matrices are written as a

function of radian frequency w because the elements of the joint coupling

matrices depend, in general, on frequency. (Note, however, that for the

rigid, massless joints considered here, the elements of the joint coupling

matrices derived in Appendix A are independent of frequency.) The deriva-

tions of the joint coupling matrices in Appendix A are based on the assump-

tion that each joint is completely unconstrained. Joint coupling matrices

Bi' 2' B and -12 are 6 x 12 matrices, and joint coupling matrices B

through B1 0 are 9x l8matrices. The right hand side of each of eqns. (2)

through (13) is zero because it is assumed that there are no external forces

or moments applied to the joints.

Eqns. (2) through (13) can be combined into a single equation of the

form

B (w)Z = 0 (14)
-r -Cg

where B is a global joint coupling matrix given by

-8-
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B, 0 *0-B1 o • o p

0 B2

B (w) = (15) S

- 0 .

0.

0 B2 -  ,

and i is a global state vector given by -4

-1 "5
4%

* (16)

The global joint coupling matrix BG(w) is a 96 x 192 matrix, and the global

state vector ZG is a 192 x 1 matrix. Eqn. (16) contains all the information

about the dynamics of the joints in the lattice model of Fig. 2 and all the

connectivity information (that is, information about which members are

connected to which joints), but contains no information about the dynamics

of the members of the lattice.

Transfei Matrix Relationships .1

The Fourier transforms z3 and z1 of the state vectors z and z in .,

Fig. 2 are related by an equation of the form

-9-



z =T(W)z (17)
-3

where T(w) is the 6 x 6 transfer matrix of the member connecting joints 1

and 2. Eqn. (17) is the transfer matrix relationship for the member con-

necting joints 1 and 2. The transfer matrix for the Bernoulli-Euler beam

model and the transfer matrix for the Timoshenko beam model are given in

Appendix B. The transfer matrix is written as a function of radian

frequency w because the elements of T depend, in general, on frequency.

Transfer matrix relationships for each of the remaining members in the

lattice model of Fig. 2 can be written as

Z 5 T(w)z2  (8

=T() (19) .

-5 T(w)z10(2

z 1 ' -~ z1 (24)

-8.

.

8 1T(w)z (22)

Z11 = T(w)z (23)

1
z20 = T( )i19 (26) i

- 10 - -
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T()-- (27)
_ 1 -!W18

z27 = T(w)z22  (28)

-26 = T(w)_2 5  (29)

-29 = T (M)z24  (30)

-2 _ (1

-32 -=T )28 (1

Ile z T(w)z3 0  (32)

The transfer matrices in eqns. (17) through (32) are identical because the

*. members in Fig. 2 are identical, and because of the choice of the local

coordinate directions. (As discussed in [i], reversing the sense of the

local coordinate direction changes the transfer matrix.)

Eqns. (17) through (30) can be combined into a single equation of the

form

z !C(W)z (33)
-,kb.2

where the global state vector Z is given by eqn. (16), T (w) is a 92 x 196

-. , global transfer matrix given by

N %J,

,,A. '

,%-%,, , ,-11i-
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I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 o o o o
0 0 _0 0 1 o 0 o o o o o o o o o

0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 T 0 0 0 0 0 0 0 0 0 0 0

0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 o o o o o o o

o o 0 0 0 0 0 T 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 o o o o o o o ,

0 0 0 0 0 T 0 0 0 0 0 0 0 0 0 0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 o

0 0 0 0 0 0 0 0 0 T0T 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 T 0 0

0 0 0 0 0 0 0 0 0 0 T T 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 o
0 0 0 0 0 0 0 0 _ 0 0 0 T 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0I0 0

0 0 0 0 0 0 0 0 0 0 0 T0T 0 0

0 0 0 0 0 00 0 0 0 0 0 0 0I1

0 0 0 0 0 00 0 0 0 0 0 T 0 0

0 0 0 0 0 0 0 0 00 0 0 0 TO "LI 0 0 0 0 0 0 0 0 0 0 1 -
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and GIZ is a 96 row vector given by

-C/2A

Z4

z
6

z
-72

- 24

£125

-13

z

£252

contains half the state vectors in Z . Eqn. (35) contains all the

information about the dynamics of the members in the lattice model of

Fig. 2, but contains no information about the joint dynamics and no 4

connectivity information.

-13
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Determination of Natural Frequencies

Substitution of eqn. (33) into eqn. (14) gives

B (w)T ()Z 0 (36)
2 -

where the product B (w)T (w) is a 96 x 96 matrix. For each value of w,
-G --

eqn. (36) is a system of homogeneous linear equations for the components

of the state vector Z The values of w for which a nontrivial solution

for Z may exist must satisfy the equation r
-0G/2

det(B (M)T (M)) = 0 (37)-EN -C

The values of w which satisfy eqn. (37) are the natural frequencies of the

lattice model of Fig. 2.

Because the global transfer matrix T contains trigonometric and

hyperbolic functions of w, eqn. (37) is a nonlinear transcendental equation

in w. Since the members of the lattice model of Fig. 2 are modeled as con-

tinuous beams, there is an infinite number of values of w which satisfy

eqn. (37).

-14-
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NUMERICAL RESULTS I-

Method of Computation

In order to solve eqn. (37) for w, the determinant of B (()T can

be plotted numerically as a function of w, and the values of w for which

the determinant equals zero can be determined graphically. Alternatlvely,

a root-finding algorithm such as the bisection method or the secant method

[7] can be used.

Both the graphical method and the root-finding algorithms require a

numerical evaluation of det(B (M)T (w)). Since most of the elements of--c --c.

B (w) and T (M) are zero, it is very inefficient to encode B (w) and T ()
-C_ G -C

into a computer program directly from eqns. (15) and (34). The matrices

B () and T() are simple enough that the product BG(W)TG(w) may be com-

puted in 6 x 6 block form by hand. The result of such a hand computation

shows that B(M)T(w) is a banded matrix. Thus the determinant of B (w)T (w)

may be computed efficiently by using a computer algorithm specifically

designed for banded matrices.

The PASCAL language computer program used here to evaluate

det(B (w)T (w)) as a function of w is listed in Appendix C. The heart of
-G G

the program is the procedure bandet, which is based on a Gaussian elimination

algorithm designed to solve a system of linear equations with a banded

coefficient matrix. A discussion of this Gaussian elimination algorithm is

given in [8]. Only the portions of the bandet procedure given in [81 which

are necessary to evaluate the determinant of the banded matrix are used here.

Numerical results for the first twenty-five nonzero natural frequencies

of the lattice model for the case when the lattice members are modeled as
*

Bernoulli-Euler beams and for the case when the lattice members are modeled

- 15-
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as rimoshenko beams are given in Table 1. The results in Table 1 are

obtained by first plotting det(B (w)T (w)) as a function of w in steps of
-C -

10 rad/sec to evaluate the approximate location of the zero crossings, and

then evaluating det(B (w)T (w)) as a function of w in steps of 1 rad/sec in
* -fC -C-

the neighborhood of a zero crossing. The value of the natural frequency is

then taken as the average of the two values between which det(B (w)T (w))

changes sign. The material and geometric properties of the lattice members

which are used in the computations are given in Appendix B. A typical plot

of det(B (w)T (w)) as a function of w is shown in Fig. 4. The square data

points represent the values of det(B (w)T ()) which were actually computed,
-G -G

and the curve is a smooth (second order polynomial) fit to the data points.

An interesting section of the function det(B (w)T ( )) is shown in
G -C

Fig. 5. It appears from Fig. 5 that det(B (w)T (w)) takes the value zero*Z -- G
somewhere near w = 3250 rad/sec. The very small slope near w = 3250 rad/sec

suggests that the zero near w = 3250 rad/sec may be a multiple zero. (A

multiple zero of multiplicity k is a value of w for which det(B (w)T (w)) = 0

and the first k-l derivatives of det(B (w)T ()) with respect to w are also-C --
equal to zero.) However, an evaluation of det(_ (w)T(w)) near = 3250

rad/sec with a smaller step size for w (see Fig. 6) shows that there are in

fact five distinct zero crossings between w = 3242 rad/sec and w = 3260

rad/sec. (Note that the vertical scale of Fig. 6 is much different from

the vertical scale of Fig. 5.)

The natural frequencies computed with the Bernoulli-Euler beam lattice

model are plotted as a function of flexible mode number in Fig. 7. Fig. 7

also shows the natural frequencies obtained in a previous analysis [61 using

a finite element method and an experimental modal analysis. It is seen

- 16 -



that excellent agreement is obtained between the natural frequencies com-

puted here and those given in [6]. The maximum difference between the V

results obtained here and those given in [6) is six percent..%

.1%
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DISCUSSION

The number of natural frequencies in Table 1 was chosen arbitrarily.

The method presented here can be used to compute as many natural frequencies

as desired. For large w, the value of det(B (w)T (w)) may be larger than

the largest number which a particular computer can store, but this problem

may be overcome by introducing scale factors into the calculation of the

determinant [8]. As shown by the discussion concerning Figs. 5 and 6, some

care is required in finding the natural frequencies, since they may be very

closely spaced in some frequency ranges.

The results in Table 1 show that rotary inertia and shear deformation

of the lattice members, which the Timoshenko beam model includes and which

the Bernoulli-Euler beam model does not, have very little effect on the

natural frequencies of the lattice model for the frequency range considered

here. Note, however, that the natural frequencies predicted by the Timo-

shenko beam model are less than or equal to the frequencies predicted by

the Bernoulli-Euler beam model, and that the difference between the two

models increases with increasing frequency. It can be shown analytically

that for a single beam which is simply supported at each end, the effect

of rotary inertia and shear deformation is to decrease the natural frequencies

of flexural vibration, and that the effect increases with increasing

frequency [9].

The joint models adopted here are perhaps the simplest possible. How-

ever, the excellent agreement between the results computed here and the

results of the experimental analysis in [6] shows that the simple joint

models are certainly useful in the frequency range considered here. Also,

more complicated joint models may be included in the present analysis with

-18 -
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only minor difficulties; all that is needed is a joint coupling matrix for

each joint. Joint coupling matrices for two and three-dimensional rigid

joints with arbitrary mass and arbitrary spatial dimensions are derived in

[3).

19i
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CONCLUSIONS AND RECOMMENDATIONS

The type of analysis presented here may be applied to any system which

may be modeled as a connected network of one-dimensional members. (Note,

for example, that this kind of analysis is not restricted to structural or

mechanical systems, and is related to techniques used in the analysis of %

electrical and microwave networks [10].) The necessary numerical computa-

tions are straightforward, and are easily performed with a personal computer.

As discussed above, the effect of various member models and joint models

on the natural frequencies of the lattice may be determined by simply

altering the appropriate transfer matrices and joint coupling matrices.

Also, and perhaps more importantly, the effects of changes in the structure

of the lattice may be considered using the techniques presented here.

Changes in structure may be due, for example, to disconnected joints or

damaged members. Thus the techniques discussed here may be used to begin

to study the following nondestructive evaluation question: given a mea-

surement of, say, certain natural frequencies of a lattice structure, what

is it possible to conclude about the structural integrity of the lattic?

This nondestructive evaluation question may also be expressed in the wider

context of the system identification problem, in which the properties of

an unknown system are deduced from certain measurements of the system."

2.

-20-
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TABLE 1 First twenty-five nonzero natural frequencies of lattice model.

Flexible V

Mode Bernoulli-Euler Beams Timoshenko Beams
Number (rad/sec) (rad/sec)

1 308.5 308.5

2 433.5 433.5 -'

3 606.5 605.5 %

4 726.5 725.5

5 932.5 931.5

6 1438.5 1437.5

7 1535.5 1534.5 ..

8 1766.5 1764.5

9 2071.5 2067.5

10 2115.5 2111.5

11 2307.5 2303.5

12 2479.5 2474.5

13 2887.5 2881.5

14 2979.5 2973.5

15 3242.5 3232.5

16 3249.5 3238.5

17 3254.5 3243.5

18 3257.5 3246.5

19 3258.5 3248.5

20 3552.5 3544.5

21 4120.5 4108.5

22 5923.5 5903.5

23 6094.5 6072.5

24 6704.5 6675.5

25 6894.5 6861.5

- 22.



REPEATING

SUB -
STRUCTURE
(BAY)

R 0. 159
(.0625in) 125.730

(49.5 in)

0.635 24.384 5 BAYS
(0.251n (9.60Oin) TOTAL

0.635
(0.2 5 in) ''

24. 384
(9.6 0 in )

K- 25.654 0.953 ~

DIMENSIONS IN (10.10 in) (0.375 in)I
CENTIMETERS

NOT TO SCALE

*Fig. LI F1\te-ba lattice structure.
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Fig. 3 Lattice member, showing components of state vectors

and sign convention.
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Fig. 7 Natural frequencies obtained by finite element anal7sis,
experimental modal analysis, and Bernoulli-Euler beam
lattice model. .' ,

-29-

-, * *-



!p

APPENDIX A: DERIVATION OF JOINT COUPLING MATRICES

In this appendix, the joint coupling matrices for the lattice model

of Fig. Al are derived. The joints of the lattice model are labeled I

through 12 as shown in Fig. Al. It is assumed that all joints and members

can move only in the plane of the lattice, and that all motions are small.

It is also assumed that each joint is rigid, massless, and has no spatial

extent, and that each connection between a member and a joint is rigid.

The state vector at any point x of any member of the lattice model of :%

Fig. Al is assumed to be of the form A:

u(x, t)

v(x,t)
4'(X, t) ".

z(x,t) , M(x,t) (Al)

V(xt)

F(x, t)

where u(x,t) is the longitudinal displacement of the member, v(x,t) is the

transverse displacement of the member, p(x,t) is the rotation of the member,

M(x,t) is the bending moment in the member, V(x,t) is the shear force in

the member, F(x,t) is the axial force in the member, x is a spatial coor-

dinate which extends along the length of the member and t is time. The

components of the state vector and the sign convention adopted here for

the components of the state vector are shown in Fig. A2. Local coordinate

directions x. (i = 1,2, ..., 16) are assigned to the lattice members as
1

shown in Fig. Al. Throughout this appendix, an overbar will denote a

Fourier transform.
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Joint I
0q

The components of the state vectors zI and z 2 and a free-body diagram ,

of joint 1 are shown in Fig. A3. The equilibrium equations for joint 1

are

M1 + M2 = 0 (A2)

V - F = 0 (A3)1 2

F 1 + V2 =0 (A4)

Eqris. (A2), (A3) and (A4) can be written in matrix form as

10 0 (N21 1 ! -M

0 1 0 V1 + 0 0 -1 V2  0 (A5) %

0 0 1 FI1 L 0 1 0 F 2 . 0ij 1

The compatibility equations for joint 1 are

u + v2 = 0 (A6)

v l -u 2 = 0 (A7)

- = 0 (A8)

Eqns. (A6), (A7) and (A8) can be written in matrix form as

l 0 0 [u0 0

0 1 v 1 + 1 0 v2 = (A9)

0 0 1 1) 0 -1 2 "

Combining eqns. (AS) and (AO) and taking the Fourier transform of the

resulting equation give

-31-
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v 1

10 00 00 0100 00 M 0
'. '1

0 10000-1 0 0 0 0 V 0

22

00100000o - 1000oFo0o(AlO)

00010 0000100 -
2 0

0 0 0 0 0 1 0 0 0 0

M N2

V2

F2

The 6 x 12 matrix in eqn. (AIO) is the joint coupling matrix B of joint i.

Joint 2

The components of the state vectors z and and a free-body diagram

of joint 2 are shown in Fig. A4. The equilibrium equations for joint 2 are1 0 00 M3 -100 0
0 1 0 V + 0 B51 = {0 (All)

0 0 1 F 0 -1 0 F 4  0

The compatibility equations for joint 2 are

32
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0 1 0 v 3  1 00 4 0

0 1V3 1 1 4 1

46

Combining eqns. (All) and (A12) and taking the Fourier transform of

the resulting equation give

u 3

V3

73

S1 0 0 0 0 0 0 1 0 0 00 M 0

0 1 0 0 0 0-1 0 0 0 00 V 0
3o001 000o0o -l oco o~.. -o

- (A13)

0 0 0 1 0 0 0 0 0 -1 00 U4  0

0 0 0 0 1 0 0 0 0 0 0 1 v4  0

0 0 0 0 0 1 0 0 0 0-1 0 4 0

•*
V4

4

o4

The b x 12 matrix in eqn. (A13) is the joint coupling matrix B) of joint 2.

Joint 3

The components of the state vectors z5, and z, and a free-bodyN

diagram of joint 3 are shown in Fig. A5. The equilibrium equations for

joint 3 are

- 33 -
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M5 - Mb - M 7 = 0 (A14)

V5 - V 6 - F7 = 0 (Al5)

F5 - F6 + V 7 = 0 (AI )

Eqns. (A14), (A15) and (A16) can be written in matrix form as

1 0 0 M 5  -1 0 0 M 6  -1 0 0 7 0

0 1 V + -1 0 % + 0 - V- 0 (A17)

L0 0 F5  0 -1 F6  0 F 7  0

The compatibility equations for joint 3 are

0

u5 - u6 = 0 (A18)

v - v6 = 0 (A19)

45 - I6 = 0 (A20)

u 5 - v7  0 (A21)

v5 + u 7 = 0 (A22)

5 J7 = 0 (A23)

Eqns. (A18) through (A23) can be written in matrix form as

34

-- 34

C
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F0 0 0 0 f -1 6 0

and

K 1 H fv ~ V}4 (A25)L1 1 51 0- 0 7
'5 -0 0 1-

Combining ecqns. (A17), (A24) and (A25) and taking the Fourier of the

resulting equation give

35F
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1 0 000 00-00 00 00 0 100 00 0

0 0000000000 1~ 0- 0:0: 01:0

'CO 0l 0 0 00 0-10 00 0 0-1 00 F6  0

0 0 00 1 0 00 00-1 0 00 00 0 -19,,

.7

F 7
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The 9 x 18 matrix in eqn. (A26) is the joint coupling matrix B3 of joint 3.

p

Joint 4

The components of the state vectors z8 , z and zlO and a free-body

diagram of joint 4 are shown in Fig. A6. The equilibrium equations for

joint 4 are

1Fl 0 1 0 - 1 0 0] fM 0

S1 : + 0 0 -] V + 0 0 ij {u (A27)
0 0 1 F 8  0 1 0 F 9  0i0 Fl

L o L- L - o

The compatibility equations for joint 4 are

Fi 0 0- u 8 0 1 0 U9 0

0 1 0 90(A 28)

SL0 0 J8 0 0 ]1 II

0 1 v8  + 1 0 0 vl0 0 (A29)

00100 -1 0
00t8- L10)

Combining eqns. (A27), (A28) and (A29) and taking the Fourier transform

of the resulting equation give

- 37 -
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-~~~~~~~~Vv WIN 'soy I~ ;" w 'J 1v.y y - ja: j , * T~

uI

V8

0 0 0 0 1 0 0 0 0 0 0 m8 0

0 10 00 0-10 0 000 0 00 00 0 v80

00 0 0 0-1 00 00 0 00 00 F8  0

10 00 00 00 00 00 01 0 00 0 u 0

0 10 00 00 0 00 00-10 0 00 0 v 9  0

0 0 10 00 00 0 000 00-1 0 0 0 0 (A30)
9 .

00 0 00 0 0- 0 001 V 0

000 00 10 00 0100 10 0 0 00 1 F9  0

0 1 0 0000010 V ,

V 
1 0

v 10

10

V10

F 1 0
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The 9 x 18 matrix in eqn. (A30) is the joint coupling matrix B of joint 4.
-4

Joints 5, 7 and 9

The geometry of each of joints 5, 7 and 9 is identical to the geometry

of joint 3. Also, the relative directions of the local coordinate direc-

tions of the members attached to each of joints 5, 7and 9 are identical to

the relative directions of the members attached to joint 3. Therefore,

each of the joint coupling matrices B B7 and B is equal to B
-7 _9 -3'

Joints 6, 8 and 10

The geometry of each of joints 6, 8 and 10 is identical to the geometry

of joint 4. Also, the relative directions of the local coordinate direc- ".

tions of the members attached to each of joints 6, 8 and 10 are identical

to the relative directions of the members attached to joint 4. Therefore,

each of the joint coupling matrices B B and B is equal to B
-~6 =~8 -10 -=4

Joint 11

The components of the state vectors z and z and a free-body diagram

of joint 11 are shown in Fig. A7. The equilibrium equations for joint 11

are

1 0 07 M 2 9 -l 0 0 M 301 101

0 1 0 V29 + 0 0 -1 V30 = (A31)

0 0 1 IF 2 9  0 1 0 F30 '

- 39 -
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The compatibility equations for joint 11 are1 0 o 0o o 1  0 : ou 30
0 1 0 v2 + 1 0 0 30V 0 (A32)Fl 29 V 0 1[301 0

0 0 1 - V29 + 0 0 -l IJ 30( 0

Combining eqns. (A31) and (A32) and taking the Fourier transform of the

O"e

* resulting equation give

~29

~~~~~ 1000-00 
29  0

* 0100010000 29  0

0 0 1 0 0 0 0 -10 0 0 0 M 0(A3
29

0001 00 0 00-1 00 0 u-3F 0(A3

0 000010 00 000-1 V 0
30

0 00 001 0000 0010 0

M30 

.* V3 0

F 30 1

The 6 x 12 matrix in eqn. (A33) is the joint coupling matrix B of joint

11.
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Joint 12

The components of the state vectors z and z32 and a free-body diagram ",

of joint 12 are shown in Fig. A8. The equilibrium equations for joint 12

are

1 0 0 M 311 0 0 M3

0  1 0 V31 + 0 0- V32 (A34)

0 0 {F 0 1 0 F32 11
0 3. 32

The compatibility equations for joint 12 are

1 0F 010 u 0

0 1 0 1v31 + 1 0 v_ =j (A35)

Combining eqns. (A34) and (A35) and taking the Fourier transform of

the resulting equation give

• 'C
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u U 3 1

V3 1

0 100000 01 00 00 0 M3 0

0 01 00 0 00-1 0 00 F =0 (A36)
31

0 0 001 000 00 1 00 u 2  0

32

F3 2

M -12

12.2

-42 -
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Fig. A7 Components of state vectors z and and
free-bodv diagram of joint 11- . 30'
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APPENDIX B: TRANSFER MATRIX RELATIONSHIPS

In this appendix, the transfer matrix relationships for two lattice
p

member models are given. In the first model, hereafter called the Bernoulli-

Euler beam model, the lattice member is modeled as a classical longitudinal

rod for axial motions and as a Bernoulli-Euler beam for flexural motions.

In the second model, hereafter called the Timoshenko beam model, the lattice

member is modeled as a classical longitudinal rod for axial motions and as

a Timoshenko beam for flexural motions. It is assumed in both models that

the axial and flexural motions are uncoupled. For both models, the state

vector at any point x of the lattice member is of the form

u(x,t)

v(x,t)

z(x,t) = 4(x,t) (Bl)

M(xt)

V(xt)

F(x,t)

where u(x,t) is the longitudinal displacement of the member, v(x,t) is the

transverse displacement of the member, :+(x,t) is the rotation of the member,

M(x,t) is the bending moment in the member, V(x,t) is the shear force in

the member, F(x,t) is the axial force in the member, x is a spatial coordi-

nate which extends along the length of the member and t is time. The

components of the state vector and the sign convention adopted here for

the components of the state vector are showi in Fig. Bl. In Fig. BI, the

left end of the member is designated as point 1, and the right end of the

C - 5]-
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show in Fig .l Thoghu thi apedx an o a wil denotea

embrer isandesignateiastpon of the locals coriateix reaisodsfied asve

here can be found in [1] and 1ll].

Bernoulli-Euler Beam Model

The transfer matrix relationship for the Bernoulli-Euler beam model

is given by

52'
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p.

where

co = (cosh2 + cosE) (B3)2

I = -L(sinh + sin,) (B4)

c2 = (cosh6 - cosE) (B5)

c 1 (sinh - sine) (B6)

2 4
EIW 

(B7)
EI

0=w (B38)
E

In eqns. (B2) through (B8), Li is the mass per unit length of the member,

w is radian frequency, Z is the length of the member from point 1 to point

2, E is the elastic modulus of the member, EI is the flexural rigidity of

the member, A is the cross-sectional area of the member and p is the mass

density (mass per unit volume) of the member. For numerical computations,

the following values of the material and geometric constants are used:

-5 2 2 6 2LI = 2.44 x 10 lb-sec2/n 2
, /i = 9.85 in, E = 10 x 10 lb/in 2

, El = 4880

2 -2 2 -4 2 4
lb-in , A = 9.38 x 10 in and p= 2.6 x 0 b-sec2/in.

Timoshenko Beam Model

The transfer matrix relationship for the Timoshenko beam model is

given by

- 54 -
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*v ,. .. . .

where

co A(X coshX + x 2o x (BlO)o2 1 1 2

CA 2sinhX1 + + sinX/ (B 11)

c A(coshX 1 -cosx 2  (B12)

(s3~ -j 2/c A (B13)

A = 1(B14)2 2
+ +A
1 2

X 1  +-1(0-') -(c+T)(B5

4 21

+2= +-1(03-T) 2 1a-r (B16)

o GA (B17)

El (B18)

T EI7

O (B19)
E

2 4
- (B20)

El

-56 -
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• V

O In eqns. (B9) through (B20), j is the mass per unit length of the member,

w is radian frequency, R is the length of the member from point 1 to point

2, G is the shear modulus of the member, A is the cross-sectional area
s

of the member divided by the geometric correction factor K, i is theY

radius of gyration of the member cross section, EI is the flexural

rigidity of the member, P is the mass density (mass per unit volume) of

the member, E is the elastic modulus of the member and A is the cross-

sectional area of the member. For numerical computations, the following

values of the material and geometric constants are used: vi = 2.44 x 10 -

2 2 6 2 2
lb-sec /in ,2 = 9.85 in, G = 3.8 x 10 lb/in, As = 0.113 in , K = 0.833,

i= 7.21 x 10 in, El = 4880 lb-in , = 2.6 x 10 lb-sec /in
y

E = 10 x 106 lb/in2 and A = 9.38 x 10
- 2 in2

57A
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APPENDIX C: LISTING OF COMIPT"TER PRO(;.

PROGRAM detcalc (input,output);

(* This program is used to evaluate det(BG(w)TG(w)) for a
(* given value of w. The nonzero elements of BG(w)TG(w) are
(* stored in the matrix STBGTG. The matrix DIAG contains *)
(* the nonzero diagonal lines of BG(w)TG(w). The matrix
(* DIAG is passed to the procedure bandet, which returns
(* the value of det(BG(w)TG(w)). A discussion of the
(* procedure bandet is given in Linear Algebra, by J. H.
(* Wilkinson and C. Reinsch, Springer-Verlag, 1971.

CONST
m =6;
n =96;
p =36;
ml = 23;
m2 = 17;
E =10E6;

C = 3.8E6;
ith = 9.85;
ro = 2.6E-4;
kap = 0.8333;

EI = 4880;
ar = 0.0938;
AS = 0.1126;
mu = 2.439E-5;
r = 0.0721;

TYPE
mmatrix = ARRAY [i..m,i..m] OF real;
npmatrix = ARRAY [1..n,1..p] OF real;
dmatrix = ARRAY [1..n,-ml..m2] OF real;

VAR
* th,w,b4,sig,tau,laml,lam2,lam,cO,cl,c2,c3,det,b :real;

STBGTG :npmatrix;
DIAG :dmatrix;
T,ID,B12,B22,B31,B32,B33,B34,B35,B36,B41,B42,
B45,B46,BI12,B122 :mmatrix;
i,j,k :integer;
Timoshenko, BernoulliEuler :Boolean;

PROCEDURE bandet(n,ml,m2:integer; VAR A:dmatrix; VAR det:real);

VAR
dl,x,norm,macheps :real;

F i,j,k,l :integer;

-59- ,t
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BEGIN
*macheps 0.000000000000001;

norm :=0.0;

FOR i i=1to n DO
BEGIN x :=0.0;

FOR j :~-ml to m2 DO
* x :=x + abs(A[i,j]);

IF (norm < x) THEN norm x;
END;

1 ml;
FOR i :=1 to ml DO

BEGIN
*FOR j :=1-i to m2 DO

A[i,j-1] :=A[i,j];

FOR j :~m2-1 to m2 DO
A[i,j] 0.0;

END;
* dl := 1.0; 1 z~ml;

FOR k :=1to n DO
BEGIN x := A[k,-ml]; i := k

IF (1(n) THEN 1 := 1 + 1;
FOR j :=k + 1 to 1 do 5

IF abs(A[j,-ml]) > abs(x) THEN
*BEGIN x Alj,-ml]; i : j; END;

dl :=dl X;
IF (x = 0) THEN
BEGIN

A[k,-ml] := norm * machops;
END;

*IF (i <> k) THEN
BEGIN dl :=-dl;

FOR j :=-ml to m2 DO
BEGIN x := A[k,jj; A[k,j] A[i,j];

A~i,j] := x;
END;

9 END;
FOR i := k + I to 1 DO
BEGIN x A[i,-ml]/A[k,-ml];

FOR j :=1-mi to m2 DO
A i,j-11 A[i,j] (x *~~j)

A[ i,m2] : 0;
4p END;

END;
det :=dl;
END;

FUNCTION sinh (x:real) real;
* BEGIN

sinh (exp(x) -exp(-x))/2.0

END;
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FUNCTION cosh (x:real) :real;
* BEGIN

cosh :=(exp(.x) + exp(-x))/2.0
END;

BEG IN

*Timoshenko false;

BernoulliEuler true;

FOR i :=1 to m DO (*initialize submatrices of BGTG *
BEGIN

FOR j i=1to m DO
* BEGIN

ID[i,j] =0.0; B32[i,j] 0.0;
B12[i,j] 0.0; B33[i,j] :=0.0;
B22[i,j] :=0.0; B34[i,j] 0.0;
B31[i,j] :=0.0; B35[i,j] :=0.0;
B36[i,j] :=0.0; B41[i,j] 0.0;

*B42[i,j] :=0.0; B45[i,j] :=0.0;
B46[i,j] :=0.0; B112[i,jj : 0.0;

B122[i,j] 0.0;
END;

END;

* *form the joint coupling matrices *

B12[1 ,2] 1.0; B12[494] : 1.0;
B12[2,1] :=-1.0; B12[5,61 : -1.0;
B12L3,3] : -1.0; B12[6:5J := 1.0;
B22 j1,2] 1.0; B22 [4,4] : -1.0;

*B22[2,1] :=-1.0; B22[5,6] := 1.0;
B22[3,31 -1.0; B22[6,5] : -1.0;
B31[1,11 : 1.0; B31[491] : 1.0;
B31[2,2] 1.0; B31[5,2] := 1.0;
B31[3,3] : 1.0; B31[6,3] : 1.0;
B32[1,1] :=-1.0; B33[4,2] -1.0;

*B32[2,2] :=-1.0; B33[5,1] 1.0;
B32[3,3] : -1.0; B33[6,3] : -1.0;
B34[1,41 1.0; B35[1,4] -1.0;
B34[2,5] 1.0; B35[2,5] : -1.0;
B34[3,6] : 1.0; B35[i3,61 : -1.0;
B36[1,4] -1.0; B41[4,1] 1.0;

*B36[2,6] :=-1.U; B41[5,2] 1.0;
B36[3,5] : 1.0; B41[6,33 : 1.0;
B42[4,2] := 1.0; B45[4,4] 1.0;
B42[5,1] : -1.0; B45[596]1: -1.0;
B42[6,3] : -1.0; B45[6,5] 1.0;
B46[1,2] 1.0; B46[4,4] -1.0;

*B46[2,1] :=-1.0; B46[5,63 : 1.0;
B46[3,3] : -1.0; B46[6,51 -1.0;
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B112[1 ,2] :=-1.0; B112[4,41 : -1.0;
*B112[2,1] := 1.0; B112[5,6] -1.0;

B112[3,31 : -1.0; B112[6,5) : 1.0;
B122[1,2] : 1.0; B122[4,4] 1.0;
B122[2,1J 2 -1.0; B122[5,63 : -1.0;
B122[3,3] : -1.0; B122[6,5] : 1.0;
ID[1,1] 2 1.0; ID[4,4] 1.0;

*IDL2,2] : 1.0; ID[5,5] 1.0;
ID[3,3] 1.0; ID[6,6] 1.0;

W : 10.0; (*assign a value to w

WHILE (w < 10000.0) DO

* BEGIN

FOR i := 1 to n DO (*Initialize the matrix STBGTG *
BEGIN

FOR j := 1 to p DO
BEGIN

& STBGTG[i,jJ 2 0.0;
END;

END;

IF (Timoshenko) THEN
BEGIN (*form transfer matrix of Timoshenko beam *

th 2=ith *w * sqrt(ro/E);
b4 :=mu *sqr(w) * sqr(sqr(lth))/EI;
sig :=mu *sqr(w)* sqr(lth)/(G*as);
tau :=mu *sqr(r)* sqr(w)* sqr(lth)/EI;

lami : sqrt(sqrt(b4 + ((sqr(sig-tau))/4))
- (sig~au)/2)

lam2 :=sqrt(sqrt(b4 + ((sqr(sig-tau))/4))
+ (sig+tau)/2);

lam 1= 1/(sqr (laml ) + sqr(lam2));
co : lam * (sqr(lam2) * cosh(laml)

+ sqr(laml) * cos(lam2));
cl lam * (sqr(lam2)/laml * sinh(laml)

* + sqr(laml)/lam2* sin(lam2));
c2 :=lam * (cosh(laml) - cos(lam2)); -

c3 =lam * (1/lami * sinh(laml)
- 1/lam2 *sin(lam2));

T[1,11 : cos(th);
T[1l,2] 2 0.0;

* T[1,31 : 0.0;
T[1,4] : 0.0;
T[1,5] 0.0;
T[1,6] 2=lth/(E*ar)*sin(th)/th;

T[2,11 0.0;
T[2,2] 2=cO - (sig*c2);
T[2,5] : lth*(cl - ((sig + tau) *c3));

T[2,4] 2 (sqr(lth)/EI)*c2;
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t,
T[2,5] 1 (sqr(lth)*lth/(b4*El))*(-(sig*cl)

+ ((b4 + sqr(sig))*c3));

T[3,1] := 0.0;
T[3,2] (b4/lth)*c3;

T[3:3] cO - (tau*c2);
T (ith/EI) * (ci - (tau*c3));

T[3,5] T[2,4];
T[j3,6] : 0.0;
T[4,1] 0.0;
T[4,2] b4 * (EI/sqr(ith)) * c2;
T[4,3: (EI/lth) * (-(tau*cl) + ((b4 + sqr(tau))*c3));
T[4,4] T[3,3;
T[4,5] T[2,3];
T[4,6] := 0.0;
T[5,1] 0.0;

T[5,2] :: b4*(EI/(sqr(lth)*lth))*(cl - (sig*c3));
T[5,3] := T[4,2];
T[5,4] := T[3,2];
T[5,5] := T(2,2];
T[5,6j := 0.0;
T[6,1] -mu*ith*sqr(w)*sin(th)/th;
T[6,2] 0.0;
T[6,3] := 0.0;
T[6,4] 0.0;
T[6,5] := 0.0;
T[6,6] cos(th);

END;

IF (BernoulliEuler) THEN
BEGIN (* form transfer matrix of Bernoulli-Euler beam *)

b4 mu * sqr(w) * sqr(sqr(lth)) / EI;
b := sqrt(sqrt(b4));

th ith * w * sqrt(ro/1);
cO 0.5 * (cosh(b) + cos(b));
c = (1 / (2 * b)) * (sinh(b) + sin(b));
c2 (1 / (2 * sqr(b))) * (cosh(b) - cos(b));
c3 (1 / (2 * sqr(b) * b)) * (sinh(b) - sin(b));

T[1,1] cos(th);
T[1,2] 0.0;
T[1,31 0.0;
T[1,4] 0.0;
T[1,5] 0.0;
T[1,6] :: ith / (E * ar) * sin(th) / th;
T[2,1] := 0.0;

T[2,2] cO;

T[2,3] lth * cl;
T[2,43 := sqr(lth) * c2 / El;
T[2,5] sqr(lth) * Ith * c3 / El;
T[2,61 0.0;
T[3,1] 0.0;
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T[3,2] b4 * c3 / lth;
T[3,3] cO;
T[3,4] := ith * cl / EI;
T[3,5] T[2,4];
TL3,6 : 0.0;
T[4,1] 0.0;
T[4,2] b4 * EI * c2 / sqr(lth);
T[4,:3j b4 * El * c3 / ith;
T[4,4] T[3,3];
T[4,5] T[2,3];
T[4,6] 0.0;
T[5,1] 0.0;
T[5,2] b4 * EI * ci / (sqr(lth) * lth);
T[5,3] TL4,21;
T[5,4] T[3,2];
T[5,5] T[2,21;
T[5,6] 0.0;
T[6,1] -mu * ith * sqr(w) * sin(th) / th;
T[6,2] 0.0;
T[6,3] : 0.0;

*T[6,41 0.0;
T[6,5] 0.0;
T[6,6] cos(th);

END;

FOR i := 1 to m DO (* form the matrix STBGTG *)
BEGIN

FOR j := 1 to m DO
BEGIN

STBGTG[ i , 18 + j] ID[ij];
STBGTG[ i , 24 + j] B12[ij];
STBGTG[ 6 + i, 12 + j] T[ij];
STBGTG[ 6 + i, 24 + j] B22[ij];
STBGTG[12 + i, 24 + j] B32[ij];
STBGTG[12 + i, 30 + j] B33[ij];
STBGTG[18 + i, 18 + j] B35[itj];
STBGTG[24 + i, 18 + j] T[ij];
STBGTG[24 + i, 24 + ji B46[itj];
STBGTG[30 + i, 24 + j] B32[itj];
STBGTG[30 + i, 30 + j] := B33[itj];
STBGTG[36 + i, 18 + j] B35[ij];
STBGTG[84 + i, 6 + T[itj];
STBGTG[84 + i, 24 + j] B112[itj];
STBGTG[90 + i, 18 + j] T[itj];
FOR k := 1 to m DO
BEGIN
STBGTG[12 + i, 12 + j] STBGTG[12 + i, 12 + j)

+ B31[i,k] * TLk,j];
STBGTG[18 + i, 6 + j] STBGTG[18 + i, 6 + j]

+ B34[i,k] * Tk,j];
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STBGT(4[18 + 1, 12 + S] STBGTG[18 + 1, 12 + ]
+ B42Li,k] * T[k,j];

* S'BGTG[18 + 1, 24 + i] STBGTG[18 + 1, 24 + i]

+ B41 [i,k] * T[ k,j] I;I
STBGTG[24 + i, 6 + j] STBGTG[24 + i, 6 + j]

+ B45[i,k] * T[k,j];
STBGTG[90 + i, 12 + j] STBGTG[90 + i, 12 + j]

END; 
+ B122[i,k] * T[k,Sj];

STBGTG[18 + i, 24 + j] STBGTG[18 + i, 24 + i].
+ B36[i,T];

STBGTG[30 + i, 6 + j] STBGTG[12 + i, 12 + +j];
STBGTG[36 + i, j 3 STBGTG[18 + i2 6 + j];
STBGTG[36 + i, 12 + j] STBGTG[18 + i, 12 + i];
STBGTG[36 + i, 24 + j] STBGTG[18 + i, 24 + j];

END;
END;
FOR i := 1 to m DO
BEGIN

FOR j := 1 to p DO
BEGIN

STBGTG[42 + ij].'= STBGTG[24 + i j];
STBGTG[48 + ij] STBGTG[30 + ij];
STBGTG[54 + ij] STBGTG[36 + ij];
STBGTG[60 + ij] := STBGTG[24 + ij];
STBGTG[66 + ij] STBGTG[30 + ij];
STBGTG[72 + ij] := STBGTG[36 + ijS];
STBGTG[78 + ij] STBGTG[24 + ij];

END;
END;

FOR i := 1 to n DO (* initialize the matrix DIAG *)
BEGIN

FOR j := -ml to m2 DO
BEGIN
DIAG[i,j] := 0.0;

END;.
END;

FOR i := 0 to 95 DO (* form the matrix DIAG *)
BEGIN

FOR j := 1 to 36 DO
BEGIN
DIAG[i + 1, -19 - (i mod 6) + j] := STBGTG[i + 1, j];

END;
END;

write (Lst,w);
bandet(n,ml,m2,DIAG,det); (* call procedure bandet, *)
writeln (Lst,det); (* write det *
w w + 10.0; (* and add an increment to w

END;
END.
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